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Note that, as follows from § 2, the values {OpJOqiot}ot 
and {~z lit3(O2pj/Ochot 0tbt3)}ot can be computed as fast 
as the values pj(r, q j). 

Similarly, passing from the direction (L, to) in the 
variables (Q, x) to the direction II  in the variables 
X, we have by (42) the following equation: 

$"2k43--" X { Ljot[Oq, iot(X)/ O)(kO] 
Lot 

+ Qjot E to,~[O2qjot(X)/OXkt3 OXj} • (51) 
i,y 

It should be emphasized that, in contrast to Agarwal 
(1981), Dodson (1981) and Hendrickson & Konnert 
(1980), who have made approximations for the matrix 
H =V2qR(Q), we obtain by (43)-(51) an absolutely 
accurate product V2×Rto without further assumptions 
for the elements of the matrix V2R. 

3.4. Rdsumd 

Thus, we have shown that for any method of 
describing an atomic model by generalized para- 
meters and for every minimized function R(X) an 
algorithm may be obtained that allows R(X) and the 
derivative in the direction aR(x)/ato as well as all 
the components of the vectors VxR and V2xRto to 
be computed in four times the time needed to calcu- 
late the value of R(X). Given the model and refine- 
ment criteria, we must only specify the transforms 

X-->q(x) and {fR, f~}->R. 

It should be noted that the criteria expressed by 
atomic parameters (criterion R.¢) can be estimated in 

a similar way, but the procedure in this case is greatly 
simplified: once the values of q have been determined, 
the criterion can be calculated without the transform 
q_~ p_~ (fR, f l ) .  

The authors are grateful to K. V. Kim and Yu. A. 
Nesterov for the fast differentiation algorithm, which 
made a principal impact on the present paper. The 
authors also thank V. V. Borisov, A. A. Vagin and 
A. I. Ryskin for valuable discussions and O. M. 
Liginchenko for her great help in preparing the manu- 
script. 
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Abstract 

Tests of the distribution fitting methods for cen- 
trosymmetric structures show that these methods can 
be used successfully for the search of a correct sol- 
ution in direct methods. To get good resolving power, 

* This research was carded out when the first author was a 
visiting scientist at the University of Amsterdam. 

0108-7673/85/040333-08501.50 

different types of seminvariants (~ 1, triplets, quartets) 
should be used, as is done in other methods. 

1. Introduction 

The power of direct methods for solving the phase 
problem is dependent on the information about the 
structure that is contained in the structure invariants 

© 1985 International Union of Crystallography 
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and seminvariants. In general the information content 
of an invariant or seminvariant is expressed as a 
probability distribution based on a finite number of 
normalized structure-factor magnitudes I EI. Contem- 
porary methods concentrate their attention on the 
optimal use of the most reliably determined 
seminvariants.* The distribution fitting methods 
described by Hagek (1984a, b, c, d) take full benefit 
of the structure information contained in less reliably 
determined seminvariants, thus allowing the use of 
information on the whole profile of the distribution 
functions of the seminvariants. These methods search 
for a correct set of phases according to the best fit 
between the trial and the true distribution of 
seminvariants.t The true distribution, being unknown 
until the structure is solved, is estimated either purely 
from theory or as a semiempirical distribution, the 
parameters of which are determined using a number 
of known structures. The trial distribution is the distri- 
bution, which follows from a set of trial phases, 
obtained from a practical direct-method procedure. 

From a theoretical point of view, these methods 
should give better results than figures of merit (FOM) 
based on 'one-point' comparison of the characteristics 
of the distributions. However, a number of problems 
are met when trying to use these methods in practice. 
Most of them are solved by a compromise between 
several requirements (e.g. theoretical estimate of the 
true distribution, number of seminvariants used and 
their sampling). 

In this paper, the discriminating power of the distri- 
bution fitting method is tested on several centrosym- 
metric structures. Seminvariants, were calculated with 
the program S IMPEL.  No attempt was made to 
optimize their sampling using an analysis of the graph 
of phase relations (Hagek, Huml, Schagen & Schenk, 
1983). In the discussion of results, the following three 
types of seminvariants were treated separately: (1) 
one-phase structure seminvariants determined from 
the first phasing shell (Y.~ relation); (2) three-phase 
structure invariants (triplets) determined from the 
three [E[ values involved; (3) four-phase structure 
invariants (quartets) determined from the four main 
terms and three cross terms. Finally, the global 
coefficients based on all ~ ,  triplet and quartet rela- 
tions are discussed. 

2. Method 

Two different measures of the fit between the trial 
and theoretical probability distributions of semin- 
variants are used in this paper, viz the X 2 test and 
the Kolmogorov test. 

The X 2 test for centric seminvariants is defined by 
Ha~ek (1984b). Since it is convenient to use different 
parameters for different types of seminvariants, the 
test is first used separately for individual types of 
seminvariants. The coefficient Kk for the kth type of 
seminvariant is calculated using 

K k  = ~ "  ~ f~trial /--itheor~2 (1)  
Wjk 1, ~ +jk - -  "~ +jk } , 

J 
t-~trial  where '¢+jk is the relative frequency of positive sign 

in the set of seminvariants belonging to the kth type 
and the j th  region for the trial set of signs of structure 
factors tested and Q~Tk °r is its theoretical estimate. 

A correct choice of the weighting scheme is impor- 
tant to ensure optimal properties for the method. The 
best results were obtained with a modified weighting 
scheme compared with the theoretical one, given by 
Ha~ek (1984b, equation 18): 

Wjk =[Xjk(1 --X~k)/Njk + q2]-,, (2) 

where 

Xjk = min [1 -- c, max (c, rltheor~l • ¢ ÷ j ~  j j .  ( 3 )  

The constants c and q are related to the expected 
reliability of the estimate of the distribution. 

For increasing numbers of seminvariants in a single 
region one obtains more precise estimates of the trial 
distributions and the corresponding weight is then 
determined only by the coefficient q, which represents 
the remaining uncertainty in the estimate of both 
distributions to be compared: 

lim Wjk = q-2. (4) 
N j k -.-~ oo 

In regions with f~theor r~theor ~ + j k  ' '>  1 or ~ + j k  "->0, where the 
weighting scheme given by Hagek (1984b) does not 
depend on the sampling size, the weight (2) reduces 
to 

Wjk = [C(1 -- C)/Njk + q2]-2, (5) 

i.e. Wik decreases with the decreasing number of 
seminvariants N~k in a single region. These properties 
are important for the X 2 test based on the usual choice 
of most reliable triplets and quartets using fixed 
regions, because of large differences in the numbers 
of seminvariants in the regions. The tests presented 
here were made with q = c = 0.1. However, no system- 
atic attempt has been made to optimize coefficients 
q and c.* 

The coefficient K (for all seminvariant types) is 
calculated simply as a weighted sum of coefficients 
Kk, 

* Throughout this paper the term seminvariant is used as short- 
hand notation for structure invariants and structure seminvariants 
(Ha~ek, 1984a). 

t The notions true, theoretical, empirical and trial distributions 
and a priori structure information are explained by Ha~ek (1984b). 

K = Y'. akKk, (6) 
k 

* Analogous results were obtained with the weighting scheme 
(2), where xik = Q~7~ ° r -  c(Q~Tk°r-0"5). 
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where weights ak are used to equalize the influence 
of the different degrees of freedom* for different 
seminvariant types on the resulting values of the X 2 
test. 

The application of the Kolmogorov test has been 
described by Ha~ek (1984d, equations 6-8). For cen- 
tric seminvariants the Kolmogorov test reduces to a 
rejection of all the solutions having a difference 

Ojk = I Nt+hfk °r --/vt+~l I (7) 

greater than the critical value D~ it (Table 1 in Ha~ek, 
1984c) for every region and every seminvariant type. 

The measure of the fit is given by the maximal ratio 

RATIO = o ~ a x / D ; ~  t, (8) 

where D~  ax is the maximal difference between the 
cumulative distributions of seminvariants and D ~  t is 
the critical value at the significance level a = 0.01. 
The lower the RATIO the larger the chance that the 
solution is true.? 

The program C E N T R O ,  used for the calculation 
of the X: and Kolmogorov tests for centrosymmetric 
structures, was used with program system S I M P E L 8 2  
(Schenk, 1983). ~1 relationships, triplets and quartets 
have been calculated by the program T R I Q U A .  Trial 
signs are used in different forms: either as symbolic 
signs (output from symbolic addition procedure 
S Y M B A D ) ,  or as signs of structure factors refined 
by the tangent formula (program T A N R E F ) ,  or as 
'true' signs after refinement of the structure. 

When the symbolic addition is used, some 
reflexions are assigned several different symbolic 
signs, which for some trial solutions result in both 
indications + and - .  Then the sign with the highest 
sum of weights of contributing triplets is accepted; 
however, if 

( IV+ - W _ ) / (  W+ + W_) < LIM,, 

or max ( IV+, W_) < LIM2, (9) 

the indication is uncertain and the sign remains 
undetermined. The symbol IV+ (W_) denotes the sum 
of weights of triplets indicating the positive (negative) 
sign of the reflexion. L I M ,  LIM2 are limits set by 
the user. 

The distribution fitting methods can be employed 
with any type of seminvariant; here, the tests have 
been performed for one-phase structure semin- 
variants, and for the structure-invariant triplets and 
quartets. A generator for random numbers was used 
for selecting a random sample of seminvariants when 
the number of seminvariants in the input file was 
larger than 3000. Limits for the weights of 
seminvariants defining the regions can be fixed either 

* Number of regions minus one. 
t" The value of r~c~it "-'jk depends on the number of seminvariants in 

the respective regions. 

in advance (fixed regions) or can be calculated in 
subroutine R E G I O N  so that every region contains 
approximately the same number of seminvariants. 

2.1. N u m b e r  o f  var iables  

The application of the distribution fitting method 
is more complicated when the number of variables 
in both distribution functions used in the test is 
greater, because the number of regions and also the 
required number of seminvariants rise steeply with 
the dimension of the space in which the distributions 
are applied. As a consequence, a reduction of 
dimensionality leads to a reduction in computing 
time. However, this also diminishes the discriminat- 
ing power of the method. 

The theoretical probability distribution 
P(~b, R1 . . .  , Rm) is usually expressed as a function 
of (m + 1) variables (i.e. of m phasing magnitudes 
and of the seminvariant value). Under general condi- 
tions it is possible to use new 'generalized coordi- 
nates', Yl = Yl(  R1, . . . , Rm) ,  . . . , Ym = ym(  R1, . . . , Rm) ,  
such that the probability function mainly depends on 
r < m generalized coordinates. Then, from the point 
of view of the distribution fitting methods, little struc- 
ture information is lost if the corresponding marginal 
distribution is used: 

P ( ~ , Y l , . . . , Y r ) = ( 1 / V )  

X~...~ P(~,y,,...,y,,yr+1,...,ym)dyr+1 . . . d y m .  

(10) 

The other possibility is to use the respective condi- 
tional probability distribution 

P ( @ , Y , , ' ' ' , Y r [ Y r + , , . . . , Y m ) ,  (11) 

where coordinates Y r + l , . . . ,  Ym may be fixed, e.g. at 
the average values of these generalized coordinates. 
Generally, the reduction of the number of variables 
may lead to the partial loss of discriminating ability 
of the method caused simply by the fact that the 
distributions are not described in sufficient detail. 

In this paper we use the simplest procedure valid 
for any seminvariant type by taking the distribution 
of seminvariants as a function of a single generalized 
coordinate ptheor [i.e. equations (18) for one-phase 
seminvariants, (19) for triplets and (20) for quartets]. 
The ideal fit between the theoretical and trial distribu- 
tions is evaluated according to the deviations of the 
chart of Qtrial against Qtheor from the plane Qtrial= 
Qtheor for acentric seminvariants or from the straight 
line Q~al= Q~eor for centric seminvariants (Fig. 1).* 
The efficiency of the distribution fitting methods 
would be higher if the distributions were described 
in more dimensions, particularly in the case of quar- 
tets. However, no attempt has been made here to test 

theor  theor  * For the difference between P and Q see Ha~ek (1984b). 
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experimentally the influence of an increase in the 
number of variables on the discriminating power of 
these methods. 

2.2. Criteria 

The following criteria are used in this paper for a 
comparison of the efficiency of the methods: 

1. sequence number of the correct solution in the 
ordered list of tested figures of merit, SEQNO; 

2. selectivity of the method, defined as the ratio of 
the number of trial solutions NREJ that have been 
rejected by the criterion used to the total number of 
trial solutions NTOT. The selectivity SEL = 
N R E J / N T O T  is written as an unreduced fraction (e.g. 
2/64); 

3. maximal relative difference, M A X D =  
100(Kh- Kc)/Kh, where Kc is the coefficient (1) for 
the correct set of phases and Kh is the highest (i.e. 
the worst) coefficient (1) ; 

4. minimal relative difference, M I N D =  
IO0(K2-K~)/Kh, where K 2 is the lowest coefficient 
(1) among the wrong solutions. 

The figures of merit are considered to be more 
efficient if they systematically give lower SEQNO and 
SEL. If these measures give identical results, the better 
procedure is determined according to the higher value 
of the maximal relative difference MAXD. Higher 
values of MIND imply a higher discriminating power. 

The efficiency of the distribution fitting method is 
influenced mainly by the following three parameters: 

number of regions in which the theoretical and trial 
distributions are compared; 

average number of seminvariants per region. This 
parameter is closely related to the statistical error in 
the trial distribution; 

percentage of directly tested phases, PERC = 100 x 
N I N C L / N R E F ,  where NINCL is the number of 
phases included in at least one of the seminvariants 
used, NREF is the total number of reflexions used. 

It is expected that the importance of PERC 
increases for structures with low internal consistency 
within the set of reliable seminvariants used in the 

calculation of trial sets of phases. The results of the 
distribution fitting methods are compared in Tables 
3, 4, 6 with the following figures of merit (Schenk, 
1983) based on Y.1 relationships, Harker-Kasper 
relationships, the Y~2 consistency relationship 
(Schenk, 1971b) and positive and negative quartets, 
respectively: 

FOM1 = Y'. w .  ( P + -  0.5), (12a) 

FOM2 = EWH+KWH-K E2 Eu+KEn-KI 

x (2IEK 12 + [E2,[ 2 -  2), (13a) 

FOM3 = ~WKWn-KWLWH-L 

×T(IE.I, IE, I, IE.-KI, IE,I, IE.-LI), (14a) 

FOM4 = E WnWKWLW-H-K-LIEuEKELE-n-r-L[ 

X { 1 + (IE,, + [+ IE,, ,,1 + [ L[)/N '/2} 
( lSa)  

FOM5 = ~WuWKWLW-n-K-LIEuEKELE-n-K-L 

x (I E,.+,_, I = + IEK +,.I = + . . .  + IE,  +,-,I = -  2), 
(16a) 

where WH is equal to the trial sign of EH multiplied 
by a weight reflecting the reliability of this sign. All 
the figures of merit are given by their relative values 
in Tables 3, 4, 6: 

Sl  = 100 x F O M , / F O M ~  ax, (12b) 

H K =  100 x FOM2/FOM~ ~x, (13b) 

Q = 100 x FOM3/FOM~ ax, (14b) 

F m a x  PQ= 100 x OM4/FOM4 , (15b) 

N Q =  100 x FOMs/FOM~ 'ax. (16b) 

Combined figures of merit (Schenk, 1983; Main et 
al., 1980) are defined by 

CFOM = Y.k, x FOM,/Y. ~, (17) 

where ~ are weighting coefficients. The combined 
figure of merit CFOM used in Table 8 is defined by 
(17), where the summation runs over all FOM's 
defined by (12b)-(16b), with all coefficients ~ = 1. 

O~ m" O ' m P ~  

_ 6 , / 7  O,.,,o~ ('~theor 
~ +  

(a) (b) 

Fig. 1. Ideal fitting between the theoretical and empircal distribu- 
tions corresponding to the linear dependence of Qemp on Qtheor, 
when the generalized coordinate is chosen to be Qtheor: (a) 
centric seminvariants; (b) acentric seminvariants. 

3. Results 

All structures used for testing are listed in Table 1. 
The numbers of sets of trial signs generated automati- 
cally in the course of the symbolic addition (SIM- 
PEL82) are given in the first column of Table 2. The 
second column shows the numbers of the highest IEI 
values used for the calculation of triplets and quartets. 
Cross terms were looked for among all the measured 
reflexions. Column 4 contains the numbers of triplets 
with [EnEKE-n-K l~ Nl/2> E3min. Unlike the triplets, 
whose numbers were approximately the same for all 
the tested structures, the numbers of quartets with 
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Table 1. Structures used for testing 
N is the total number of  non-H atoms in the unit cell. 

N 
MARIN 30 
WILLES 40 
BORAAN 58 
ONONIE 72 
BIBIME 100 
DIAM 120 

Space 
Z group Formula R References 
2 P i  CsH7CI3N4 0"034 (a) 
2 P i  ClTH23NO 2 0-067 (b) 
2 P]" C2sH2s B 0"057 (c) 
4 p2t/n C14H22N202 0.044 (d) 
4 P2t/c C25H16 0.060 (e) 
8 P42/n cl4n2oO 0-090 (f) 

References: (a) Tinant, Germain, Declereq & Van Meerssche (1979); (b) 
de Jong, Dik-Edixhoven & Schenk (1973); (c) Finocehiaro et aL (1980); 
(d) Schenk (1971a); (e) Schenk (1972); (f) Rogers & Kennard (1980). 

[EnEKELE_n_K_LI/N> E a m i  n differ almost by two 
orders of magnitude (columns 6-9). No calculation 
of quartets has been made for the structure DIAM. 

3.1. Y~l relation 
The probability of the positive sign of a one-phase 

structure seminvariant was determined using the 
relationship 

P+ = l+½tanh  [N-~/2~ EH(IEr 2-1) 

x exp (2ariKts) ] ,  (18) 

where the summation runs over all reciprocal vectors 
K for which 

K(I-Rs)=H. 
I is the unit matrix, R~ is a rotational matrix and ts 
the corresponding translation vector of the space 

Dtheor group in question. The value , t+ j  k in every region 
was computed for the average argument of tanh taken 
for all seminvariants in this region (Hagek, 1984b, 
equation 11 c). 

Measurements of the efficiency of the method for 
six structures are given in Table 3. Calculations were 
made for fixed regions with limits corresponding to 
the theoretical probabilities 1.0, 0.8, 0.6, 0.5, 0-4, 0.2, 
0.0. For MARIN and BIBIME two symbolic signs 
and for WILLES one were not included in any one- 
phase seminvariant thus giving groups of undistin- 
guished trial sets. Comparison of columns SEQNO 
and PERC confirms that the efficiency of the X 2 test 
for the ~1 relation is correlated with the percentage 
of directly tested phases. It implies higher efficiency 
of the test for space groups of higher order. The 
Kolmogorov test (columns 5, 6) has very poor selec- 
tivity. With the exception of DIAM, all differences 
between the trial and theoretical distributions are 
tolerated for almost all trial sets of phases. In agree- 
ment with our expectation, the Z1 criterion (12), given 
in the two latter columns, has properties that resemble 
the X 2 test (compare SEQNO's in columns 1 and 7). 

3.2. Triplet relationships 
The theoretical probability of the positive sign of 

a triplet is calculated using the hyperbolic tangent 
formula (Cochran & Woolfson, 1955): 

p + = l  1 ~+~tanh (N-1/21E.E~E_._KI). (19) 

The results of the X 2 test based on triplets are summa- 
rized in Table 4. With this criterion alone, good results 
were obtained for structures crystallizing in non- 
triclinic space groups, and the Kolmogorov test also 
does very well. Only MARIN showed a surprisingly 
large number of positive triplets for the correct set of 
signs, among 3600 triplets [where about 300 negative 
triplets are expected according to (19)] only 25 nega- 
tive triplets were actually observed. 

The distribution fitting method based on triplet 
relationship (19) and ~2FOM Q (Schenk, 1971b) 
seems to be roughly of equal quality (see Table 4). 

Unlike ~1 relationships, triplet relationships give a 
sufficient number of triplets to test directly all struc- 
ture-factor phases (PERC in column 4 are -~100%). 
Therefore, some freedom remains to specify the limits 
of the regions and to choose the numbers of triplets 
in the regions. Table 5 shows how the discriminating 
power of the X 2 and Kolmogorov tests decreases with 
decreasing number of randomly selected triplets for 
fixed limits of the regions. It seems that the number 
of triplets in any region must not fall under 100 to 
preserve the efficiency of the test. 

Since the triplet relationships usually form the basis 
of the calculation of the trial sets of phases, it is 
probable that all trial distributions of triplets fit the 
theoretical distribution rather well. As a result only 
poor resolving power of the test can be expected when 
the estimate of the 'true distribution' is largely in 
error, as in the case of MARIN. Therefore, to increase 
the efficiency of this test more attention should be 
devoted to deriving an exact expression for the distri- 
bution of triplets taking into account the preliminary 
knowledge on the arrangement of atoms in the crystal. 

3.3. Quartet relationships 
Four different relationships for the theoretical 

probability of a positive sign of quartets based on 
seven magnitudes En, Er,  I~LI, IE-~-K-LI, I~,~+KI, 

IEK+ I were tested (Schenk, 1973; Hauptman 
& Green, 1976; Giacovazzo, 1977, 1980, equations 
8.49-50). For our sampling of quartets (see Table 2), 
the best fit was obtained for the last formula: 

P+ = ½+½ tanh [N-11EHEKELE_M_K_LI 

×(IE,~+,,I=+IEH+~I2+IE~+LI=-2)]. (20) 
If any of the cross magnitudes was outside the 
measurement sphere, its 181 value was set to 1. 

Formula (20) was used here in all tests for the 
calculation of the theoretical probability of a positive 
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MARIN 
WlLLES 
BORAAN 
ONONIE 
BIBIME 
DIAM 

Table 2. Characteristics of  source data for all tested structures 

N u m b e r  N u m b e r  N u m b e r  N u m b e r  N u m b e r  o f  q u a ~ e t s  with at least n cross te rms 

o f  trial o f  o f  ~1 o f  
sets reflections re la t ionships  tr iplets E3min 0 1 2 

128 300 30 3533 0"7 5200 5198 4818 
32 300 27 3076 0"6 19038 18807 15218 
64 400 61 5575 0"6 33131 33129 30940 

8 500 65 5233 0"7 7387 7285 5864 
64 350 37 3358 0"6 497 478 336 

4 300 81 3988 0"6 - -  - -  - -  

3 E4mi n 

1267 1"1 
3347 1-0 
8001 1-0 

303 0-6 
31 0-7 

Table 3. Test of  figures of  merit based on Y~1 relationship 

X 2 test for Y.1 K o l m o g o r o v  test for  Y.~ 
P E R C  

S E Q N O  M A X D  M I N D  ( % )  S E L E C T  R A T I O  

MAR.IN 19 96 - 4  10 1/128 0.3 
WILLES 6 96 - 3  9 0/32 0.2 
BORAAN 3 94 - 4  15 2/64 0.4 
ONONIE 2 70 - 6  13 0/8 0.4 
BIBIME 8 82 - 4  11 7/64 0.5 
DIAM 1 69 15 27 2/4 0.7 

~ cri terion (.12) 

S E Q N O  S1 

58 51 
4 72 
3 79 
1 66 

14 77 
2 50 

MARIN 
WILLES 
BORAAN 
ONONIE 
BIBIME 
DIAM 

Table 4. Test of distribution fitting methods based on triplets and the Q criterion 

X 2 test for  tr iplets K o l m o g o r o v  test Q cri terion (14) 
P E R C  

S E Q N O  M A X D  M I N D  ( % )  S E L E C T  R A T I O  S E Q N O  Q 

127 6 -89 100 16/128 1.4" 7 95 
6 98 - 2  100 4/32 0.2 12 59 
7 94 -3  100 4/64 0.7 13 86 
1 93 15 99.4 7/8 0.8 1 76 
1 98 7 100 62/64 0.6 1 81 
2 93 - 2  100 2/4 0-9 - -  - -  

* The correct set of phases was rejected by the Kolmogorov test. 

sign for quartets for any number of cross terms. 
Because of the small number of quartets with all three 
cross terms known (Table 2), the efficiency of the 
method was better when additional quartets with at 
least two known cross terms were used. The results 
of the X 2 and Kolmogorov tests for this case are given 
in Table 6. In comparison with the results obtained 
using Y~I and triplet relationships, the distribution 
fitting method based on quartets give much better 
results. For MARIN, ONONIE and BIBIME the best 
fit of both distributions actually corresponds to the 
correct solution. However, only small differences exist 
between the most probable sets ( M I N D =  1%) for 
MARIN. For WILLES and BORAAN, the correct 
solution corresponds to the second-best fit between 
the distributions of quartets ( M I N D = - I ,  - 2 %  
respectively). 

3.4. Global coefficient of  the fit 

Because a simultaneous use of one-phase 
seminvariants, triplets and quartets substantially 
increases the amount of a priori structure information 
used, the combination of the three coefficients Kk in 
(6) and also the combination of the individual FOM 

Table 5. Increase in the discriminating power of  the 
distribution fitting method with increasing number of  

seminvariants used for the test 

( O N O N I E ,  r a n d o m  choice  f r o m  the set o f  5233 tr iplets ,  fixed 
regions,  E3mi n = 0"7.) 

Average  
n u m b e r  o f  
triplets in 

region 190 175 150 70 20 4 

SEQNO 1 1 1 1 2 5 
MAXD 99 94 96 90 79 28 
MIND 16 18 22 25 -2*  -17" 
PERC 99.6 99.6 99-6 93-0 58-4 21-2 
SELECT 7/8 7/8 7/8 1/8 0/8 0/8 
RATIO 0'8 0'7 0,7 0,5 0.3 0.3 

* Negative values indicate that the correct solution does not have the 
lowest coefficient K. 

in the combined figure of merit CFOM(17) result in 
a practically unique solution (Table 7). Good proper- 
ties of the combined figures of merit (Schenk, 1983; 
Main et al., 1980) require a proper choice of the 
weighting coefficients /q. in (17). Analogously, the 
global coefficient K is sensitive to the choice of the 
correction terms c, k in the weighting scheme (2) used 
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MARIN 
WILLES 
BORAAN 
ONONIE 
BIBIME 

Table 6. Test of figures of merit based on quartets 

Approximately 3000 quartets were used for the distribution fitting method (X 2 and Kolmogorov tests) 

X 2 test Kolomogorov test 
(1) (7) 

SEQNO MAXD MIND PERC SELECT RATIO 

1 98 1 95 16/128 0.4 
2 78 -2  98 14/32 0.9 
2 93 -1 96 60/64 1.5 
1 96 25 89 7/8 1.0 
1 95 8 41 63/64 0.8 

HKer i t edon  PQcriterion 
(13) (15) 

SEQNO HK SEQNO PQ 

2 69 3 96 
1 74 11 88 
6 66 4 93 

- -  - -  1 99 
62 38 1 87 

NQ criterion 
(16) 

SEQNO NQ 

1 100 
1 93 
1 92 
3 75 

19 66 

Table 7. Test of combined figures of merit CFOM (17) 
and K (6) 

Coefficient K (6) Combined FOM (17) 
SEQNO MAXD MIND SEQNO CFOM 

MARIN 1 97 1 1 82 
WILLES 1 88 1 1 77 
BORAAN 1 87 1 1 83 
ONONIE 1 95 22 1 79 
BIBIME 1 96 14 1 70 
DIAM 1 95 2 1 59 

for the calculation of the coefficients Kk of the 
individual seminvariant types. These constants, show- 
ing the reliability of the theoretical estimate of the 
true distribution, should be determined from experi- 
ments with a larger number of structures. 

4. Discussion 

In agreement with Schenk (1980), it is found that the 
combined FOM is superior to the individual FOM's, 
of which different ones occasionally are the best. 
However, their weighted sums CFOM(17 ) or K(6) 
determine the correct solution with great reliability 
(.Table 7). 

When standard calculation of seminvariants is 
used, most seminvariants can be found in regions 
with highest --+Dthe°r. If boundaries of the regions are 
chosen such that each region contains the same num- 
ber of seminvariants (the same expected error in the 
determination of empirical distribution), the distribu- 
tions of triplets and quartets would be described in 
detail in parts with reliably positive seminvariants. 
This would lead to disappearance of the influence of 
parts containing a small number of seminvariants 
determined with lower reliability. On the other hand, 
equidistant limits of regions cause most of the 
seminvariants to concentrate in one or two regions. 
This, however, devalues the gain ensuing from the 
great number of seminvariants used, as there is no 
sense in reducing the random error in the estimate 
of the trial distribution below one quarter of the 
expected error of the true distribution. 

In this paper, problems due to the non-uniform 
occurrence of seminvariants of different weight have 
been solved by a compromise: the boundaries of the 
regions were empirically fixed so as partly to suppress 

effects from both equidistantly fixed boundaries and 
boundaries calculated to make the same number of 
seminvariants fall into each region. It was observed 
that an inadequate choice of regions may decrease 
the selectivity of the method. 

Arguments discussed in this paper lead us to the 
conclusion that more attention should be devoted to 
obtaining better estimates of the true distributions of 
seminvariants and a better sampling of seminvariants 
for the calculation of the trial distributions. Also, it 
indicates how the method should be developed. 

1. Purely theoretical distributions of seminvariants 
should be replaced by semiempiricaUy derived distri- 
butions depending on the unique character of the 
structure under study and, for every distribution type, 
the optimal number of dimensions for calculation of 
the empirical distribution should be determined. 

2. A method of generation of seminvariants should 
be developed such that the seminvariants form a 
reliably connected graph in every region (Ha~ek, 
Huml, Schagen & Schenk, 1983). 

In conclusion, it can be stated that distribution 
fitting methods can be successfully used as figures of 
merit. 

One of us (JH) is indebted to the Netherlands 
Organization for Advancement of Pure Research 
(ZWO) for financial support during a three months 
stay at the University of Amsterdam. 
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Abstract 
It is the purpose of this paper to introduce and discuss 
the multi-beam-imaging (MBI) method for studying 
lattice imperfections in high-voltage electron micros- 
copy. The image contrast is compared with the theo- 
retical contrast based on the many-beam dynamical 
theory of electron diffraction; the effect of absorption 
is included in the calculation. It is shown that the 
nature of imperfections can be studied from only one 
image taken by the MBI method instead of the bright- 
and dark-field images that are generally used. Further, 
the images of a thick crystal taken by the MBI method 
become much brighter than the ordinary bright-field 
and dark-field images. Finally, the technique is 
applied to the characterization of stacking faults and 
screw dislocations in thick regions observed in the 
1 MeV electron microscope. 

I. Introduction 

There has been considerable interest in using high- 
resolution electron microscopy to study the structure 
of imperfections in crystals such as grain boundaries, 
coherent twin boundaries, edge and screw disloca- 
tions, intrinsic and extrinsic stacking faults, stacking- 
fault tetrahedra, GP zone and impurity atoms. (See 
also the review by Hashimoto & Takai, 1983.) These 
observations are mostly confined to the relatively thin 
crystals of about a few hundred ~ngstr6ms in thick- 
ness. Since the properties of bulk materials are deter- 
mined by the total contained imperfections, it is 
preferable to study such imperfections in specimens 
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with bulk properties. However, as shown theoretically 
and experimentally for MgO (Hashimoto, Endoh, 
Takai, Ajika, Tomita, Kuwabara & Hiraga, 1983; 
Endoh & Hashimoto, 1984a, b), the atomic structure 
images from thick crystals cannot be obtained even 
though high-voltage microscopes capable of high res- 
olution are used. It was shown that the atomic-struc- 
ture image at 1 MeV of an MgO crystal with contrast 
higher than say 20% can only be obtained if the 
crystal is less than 3000/~, thick and thus it is rather 
difficult to observe the atomic structure image of bulk 
specimens using the high-resolution technique. 
Therefore, in order to study the lattice imperfections 
in thick crystals the conventional bright-field and 
dark-field imaging methods (Howie & Whelan, 1961 ; 
Hashimoto, Howie & Whelan, 1960, 1962), the weak- 
beam dark-field imaging method (Cockayne, Ray & 
Whelan, 1969) and the bright-field imaging method 
using a higher-order reflection (Osiecki & Thomas, 
1971; Beseg, Jones & Smallman, 1971) are most 
frequently employed in the study of dislocation 
images in thick crystals. 

At high voltage (>300 kV), the Bragg angles of 
scattered waves become small and in particular those 
of low-order reflections become almost the same as 
the optimum aperture angle for obtaining the atom 
resolution image, it thus seems appropriate to investi- 
gate the use of both primary and Bragg-reflected 
waves within an aperture instead of using a small 
aperture to take respective bright-field or dark-field 
images. Even though the waves of low-order Bragg 
reflections are included in the imaging, many higher- 
order Bragg reflections that are excited at a high 
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